skip to Main Content
contact@universityphysictutorials.com

The Gibbs and Helmholtz Free Energy form the basis of our understanding of equilibrium. Including Entropy, they allow us to analyse the tendency of systems to approach equilibrium; this of course if absolutely fundamental for chemists (for example).

Return to Ther­mo­dy­nam­ics and Stat­ist­ic­al Mechanics

Return to Video Tutori­als G-Z

Video # Video Tutori­al Title Remarks
1 Ther­mo­dy­nam­ic Iden­tity 1/2 dU= TdS — PdV
2 Ther­mo­dy­nam­ic Iden­tity 2/2 dU= TdS — PdV +μdN
3 Gibbs’ and Helm­holtz’ Free Energy Energy avail­able for work under con­di­tions of con­stant pres­sure (Gibbs) or volume (Helm­holtz)
4 The Chem­ic­al Poten­tial μ
 The energy added to the sys­tem when you add a single particle
5 Gibbs’ and Helm­holtz Ther­mo­dy­nam­ic Identities Helm­holtz : dF= -SdT — PdV +μdN  and Gibbs : dG= -SdT + PdV +μdN
6 Free Energy and Equilibrium Max­im­ising the Entropy and minisim­ising the Gibbs’ and Helm­holtz’ Free Energies
7 Extens­ive and Intens­ive Quantities 
8 Chem­ic­al Poten­tial and Gibbs Free Energy Gibbs’ Free Energy per Particle
9 Chem­ic­al Poten­tial of an Ideal Gas μ0 + kT.ln(P/P0)
10 Phase Trans­form­a­tion for Pure Substances Liquid/gas phase bound­ary, Heli­um 3 and car­bon VS graphite

 

kahn academy phys­ics gibbs helm­holtz free energy chem­ic­al poten­tial ther­mo­dy­nam­ic iden­tity kahn academy phys­ics gibbs helm­holtz free energy chem­ic­al poten­tial ther­mo­dy­nam­ic iden­tity kahn academy phys­ics gibbs helm­holtz free energy chem­ic­al poten­tial ther­mo­dy­nam­ic iden­tity kahn academy phys­ics gibbs helm­holtz free energy chem­ic­al poten­tial ther­mo­dy­nam­ic identity 

Back To Top