skip to Main Content
contact@universityphysictutorials.com

 

The mul­ti­pli­city func­tion for a particle type (Boson, Fer­mi­on or Clas­sic­al Particle) is used in order to derive the Max­well Boltzmann, Fermi Dir­ac and Bose Ein­stein occu­pancy func­tions. This approach is very much a ‘plug and chug’ approach and is math­em­at­ic­ally tedi­ous. How­ever, con­cep­tu­ally it is per­haps the simplest. For that reas­on, many stu­dents first derive the occu­pancy func­tions in this man­ner. The videos below are taken from the lar­ger set of videos on Quantum Stat­ist­ics. In order to assist you in under­stand­ing how the mul­ti­pli­city func­tions are derived, I dis­cuss six ‘rules’ to fol­low. I hope that this rig­or­ous approach will make life easi­er for students.

Return to Quantum Mechanics

Return to Video Tutori­als G-Z

Video # Video Tutori­al Title Remarks
1 Macro and Micro States Unless you under­stand these you’re going to struggle at a later stage
2 The Mul­ti­pli­city Function The num­ber of ways of arran­ging the particles
3 Dis­tin­guish­able VS Indis­tin­guish­able Particles Clas­sic­al particles, Bosons and Fermions!
4 Clas­sic­al Particles, Bosons & Fermions Defin­ing each type of particle
5 Mul­ti­pli­city Rule 1 All particles are dis­tin­guish­able and inter­act­ing (4 species)
6 Mul­ti­pli­city Rule 2 Mix­ture of dis­tin­guish­able and indis­tin­guish­able particles — all inter­act­ing (3 species)
7 Mul­ti­pli­city Rule 3 Mix­ture of dis­tin­guish­able and indis­tin­guish­able particles — all inter­act­ing (3 species)
8 Mul­ti­pli­city Rule 4 Mix­ture of dis­tin­guish­able and indis­tin­guish­able particles — all inter­act­ing (2 species)
9 Mul­ti­pli­city Rule 5 Non inter­act­ing particles (could be either Bosons or Clas­sic­al Particles)
10 Mul­ti­pli­city Rule Summary A sum­mary of the first five mul­ti­pli­city rules
11 Mul­ti­pli­city Rule 6 All particles are indis­tin­guish­able and non-interacting
12 Max­well Boltzmann Mul­ti­pli­city Function A deriv­a­tion which is used later to derive the occu­pancy function
13 Bose Ein­stein Mul­ti­pli­city Function A deriv­a­tion which is used later to derive the occu­pancy function
14 Fermi Dir­ac Mul­ti­pli­city Function A deriv­a­tion which is used later to derive the occu­pancy function

 

quantum stat­ist­ics kahn academy phys­ics max­well bolzmann fermi dir­ac bose ein­stein occu­pancy func­tion num­ber dens­ity prob­ab­il­ity stat­ist­ic­al stat­ist­ics quantum stat­ist­ics kahn academy phys­ics max­well bolzmann fermi dir­ac bose ein­stein occu­pancy func­tion num­ber dens­ity prob­ab­il­ity stat­ist­ic­al stat­ist­ics quantum stat­ist­ics kahn academy phys­ics max­well bolzmann fermi dir­ac bose ein­stein occu­pancy func­tion num­ber dens­ity prob­ab­il­ity stat­ist­ic­al statistics 

Back To Top